Effect of Hydrophobic Surface on Velocity Profile of Pipe Flow

نویسندگان

  • DARINA JASIKOVA
  • MICHAL KOTEK
  • SIMONA FIALOVA
  • VACLAV KOPECKY
چکیده

The branch of fluid mechanics is also familiar with biomechanics recently. The combination of hydrodynamic and mechanical specification of the flow can reach the complex description of the liquid flow in the hydraulic system. The hydraulic system can represent the airways and ventilation system, and external blood circulation. An important role in the study of hemo-transport has its interaction with walls. Contribution of fluid mechanics can imagine the equivalent of flow in arteries as the pipe flow, hence the Poiseuille's flow, with appropriate viscoelasticity and wettability against Newtonian liquids. The initial condition is the flexible wall and hydrophobic surface of the model. The simplification of the system leads to primary setup focused in one direction. It is the hydrophobic surface in our case. Here we present the study based on four various set of samples. We worked with hydrophobic surfaces, with contact angle (CA) above 90°, and with ultra – hydrophobic surfaces with CA above 120°. Increasing the contact angle leads from bubbles conglomeration to uniform air film. The existence of symmetrical air film close to hydrophobic surface has an effect on the character of the velocity profile and its boundary slip condition. The resulting velocity profiles give us information of velocity disturbance close to the wall and contribution of vorticities in the flow. Key-Words: hydrophobic surface, particle image velocimetry, boundary condition, slip effect, pipe flow

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Crest Roughness on Flow Characteristics over Circular Weirs

Different construction materials with different roughness used to make circular weirs highly affect surface roughness and, in turn, flow hydraulics passing over these structures.  In the present research, numerous experiments under different hydraulic conditions were performed on a physical model to study the effects of roughness on flow hydraulics over a circular weir. The flow hydraulics incl...

متن کامل

Physical Modelling of Self-Aeration in a Cavitating Sudden PIPE Expansion Flow

Sudden pipe expansions have been known as efficient hydraulic energy dissipaters for a long time. The complex phenomenon of flow separation and velocity discontinuity at the interface of incoming jet and the recirculation flow, results in intensive shear and tensile rupture of the fluid and the associated destructive phenomenon of cavitation. This paper focuses on aeration in sudden pipe expans...

متن کامل

-Implementation of lattice Boltzmann method to study mixing reduction in isothermal electroosmotic pump with hydrophobic walls

The aim of the present work is to analyze the accuracy and to extend the capability of lattice Boltzmann method in slip EOF; a phenomenon which was previously studied by molecular dynamics and less considered by LBM. At the present work, a numerical experiment on boundary conditions of slip velocity is performed and the proportionality of slip with shear stress in electroosmotic pump is proved....

متن کامل

Analysis of the Effect of Fluid Velocity on the Instability of Concrete Pipes Reinforced with Nanoparticles Conveying the Fluid Flow

With respect to the great application of pipes conveying fluid in civil engineering, presenting a mathematical model for their stability analysis is essential. For this purpose, a concrete pipe, reinforced by iron oxide (Fe2O3) nanoparticles, conveying fluid  is considered. The goal of this study is to investigate the structural stability to show the effects of the inside fluid and the nanopart...

متن کامل

Effect of Elasticity Parameter on Viscoelastic Fluid in Pipe Flow Using Extended Pom-Pom Model

In this study prediction of the steady-state flow of branched polymer melts in pipe geometry with finite volume method is presented. Our analysis in this study revealed that;for normal-stress tqq , the XPP model can predict this tensor unlike the other viscoelastic models such as PTT or Gieskus which can not predict tqq...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017